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Abstract

Human listeners have the extraordinary ability to hear and recognize speech even
when more than one person is talking. Their machine counterparts have histor-
ically been unable to compete with this ability, until now. We present a model-
based system that performs on par with humans in the task of separating speech
of two talkers from a single-channel recording. Remarkably, the system surpasses
human recognition performance in many conditions. The models of speech use
temporal dynamics to help infer the source speech signals, given mixed speech
signals. The estimated source signals are then recognized using a conventional
speech recognition system. We demonstrate that the system achieves its best per-
formance when the model of temporal dynamics closely captures the grammatical
constraints of the task.

One of the hallmarks of human perception is our ability to solve the auditory cocktail party problem:
we can direct our attention to a given speaker in the presenceof interfering speech, and understand
what was said remarkably well. Until now the same could not besaid for automatic speech recog-
nition systems. However, we have recently introduced a system which in many conditions performs
this task better than humans [1][2]. The model addresses thePascal Speech Separation Challenge
task [3], and outperforms all other published results by more than 10% word error rate (WER). In
this model, dynamics are modeled using a layered combination of one or two Markov chains: one
for long-term dependencies and another for short-term dependencies. The combination of the two
speakers was handled via an iterative Laplace approximation method known as Algonquin [4]. Here
we describe experiments that show better performance on thesame task with a simpler version of
the model.

The task we address is provided by the PASCAL Speech Separation Challenge [3], which provides
standard training, development, and test data sets of single-channel speech mixtures following an
arbitrary but simple grammar. In addition, the challenge organizers have conducted human-listening
experiments to provide an interesting baseline for comparison of computational techniques.

The overall system we developed is composed of the three components: a speaker identification
and gain estimation component, a signal separation component, and a speech recognition system.
In this paper we focus on the signal separation component, which is composed of the acoustic and
grammatical models. The details of the other components arediscussed in [2].

Single-channel speech separation has previously been attempted using Gaussian mixture models
(GMMs) on individual frames of acoustic features. However such models tend to perform well only
when speakers are of different gender or have rather different voices [4]. When speakers have similar
voices, speaker-dependent mixture models cannot unambiguously identify the component speakers.
In such cases it is helpful to model the temporal dynamics of the speech. Several models in the
literature have attempted to do so either for recognition [5, 6] or enhancement [7, 8] of speech. Such



models have typically been based on a discrete-state hiddenMarkov model (HMM) operating on a
frame-based acoustic feature vector.

Modeling the dynamics of the log spectrum of speech is challenging in that different speech compo-
nents evolve at different time-scales. For example the excitation, which carries mainly pitch, versus
the filter, which consists of the formant structure, are somewhat independent of each other. The for-
mant structure closely follows the sequences of phonemes ineach word, which are pronounced at a
rate of several per second. In non-tonal languages such as English, the pitch fluctuates with prosody
over the course of a sentence, and is not directly coupled with the words being spoken. Neverthe-
less, it seems to be important in separating speech, becausethe pitch harmonics carry predictable
structure that stands out against the background.

We address the various dynamic components of speech by testing different levels of dynamic con-
straints in our models. We explore four different levels of dynamics:no dynamics, low-levelacoustic
dynamics, high-levelgrammar dynamics, and a layered combination,dual dynamics, of the acoustic
and grammar dynamics. The grammar dynamics and dual dynamics models perform the best in our
experiments.

The acoustic models are combined to model mixtures of speechusing two methods: a nonlinear
model known asAlgonquin, which models the combination of log-spectrum models as a sum in the
power spectrum, and a simplermax model that combines two log spectra using the max function. It
turns out that whereas Algonquin works well, our formulation of the max model does better overall.

With the combination of the max model and grammar-level dynamics, the model produces remark-
able results: it is often able to extract two utterances froma mixture even when they are from the
same speaker1. Overall results are given in Table 1, which shows that our closest competitors are
human listeners.

Table 1: Overall word error rates across all conditions on the challenge task.Human:
average human error rate,IBM: our best result,Next Best: the best of the eight other
published results on this task, andChance: the theoretical error rate for random guessing.

System: Human IBM Next Best Chance
Word Error Rate: 22.3% 22.6% 34.2% 93.0%

1 Speech Models

The model consists of anacoustic model andtemporal dynamics model for each source, and amixing
model, which models how the source models are combined to describethe mixture. The acoustic
features were short-time log spectrum frames computed every 15 ms. Each frame was of length 40
ms and a 640-point mixed-radix FFT was used. The DC componentwas discarded, producing a
319-dimensional log-power-spectrum feature vectoryt.

The acoustic model consists of a set of diagonal-covarianceGaussians in the features. For a given
speaker,a, we model the conditional probability of the log-power spectrum of each source signal
xa given a discrete acoustic statesa as Gaussian,p(xa|sa) = N(xa;µsa ,Σsa), with meanµsa , and
covariance matrixΣsa . We used 256 Gaussians, one per acoustic state, to model the acoustic space
of each speaker. For efficiency and tractability we restrictthe covariance to be diagonal. A model
with no dynamics can be formulated by producing state probabilities p(sa), and is depicted in 1(a).

Acoustic Dynamics: To capture the low-level dynamics of the acoustic signal, we modeled the
acoustic dynamics of a given speaker,a, via state transitionsp(sa

t |s
a
t−1) as shown in Figure 1(b).

There are 256 acoustic states, hence for each speakera, we estimated a256×256 element transition
matrixAa.

Grammar Dynamics: The grammar dynamics are modeled by grammar state transitions,
p(va

t |v
a
t−1), which consist of left-to-right phone models. The legal word sequences are given by

the Speech Separation Challenge grammar [3] and are modeledusing a set of pronunciations that

1Demos and information can be found at:http : //www.research.ibm.com/speechseparation
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Figure 1: Graph of models for a given source. In (a), there areno dynamics, so the model
is a simple mixture model. In (b), only acoustic dynamics aremodeled. In (c), grammar
dynamics are modeled with a shared set of acoustic Gaussians, in (d) dual – grammar and
acoustic – dynamics have been combined. Note that (a) (b) and(c) are special cases of
(d), where different nodes are assumed independent.

map from words to three-state context-dependent phone models. The state transition probabilities
derived from these phone models are sparse in the sense that most transition probabilities are zero.

We model speaker dependent distributionsp(sa|va) that associate the grammar states,va to the
speaker-dependent acoustic states. These are learned fromtraining data where the grammar state
sequences and acoustic state sequences are known for each utterance. The grammar of our system
has 506 states, so we estimate a506 × 256 element conditional probability matrixBa for each
speaker.

Dual Dynamics: The dual-dynamics model combines the acoustic dynamics with the grammar
dynamics. It is useful in this case to avoid modeling the fullcombination ofs andv states in the
joint transitionsp(sa

t |s
a
t−1, vt). Instead we make a naive-Bayes assumption to approximate this as

1
z
p(sa

t |s
a
t−1)

αp(sa
t |vt)

β , whereα andβ adjust the relative influence of the two probabilities, andz
is the normalizing constant. Here we simply use the probability matricesAa andBa, defined above.

2 Mixed Speech Models

The speech separation challenge involves recognizing speech in mixtures of signals from two speak-
ers,a andb. We consider only mixing models that operate independentlyon each frequency for
analytical and computational tractability. The short-time log spectrum of the mixtureyt, in a given
frequency band, is related to that of the two sourcesxa

t andxb
t via themixing model given by the

conditional probability distribution,p(y|xa, xb). The joint distribution of the observation and source
in one feature dimension, given the source states is thus:

p(yt, x
a
t , xb

t |s
a
t , sb

t) = p(yt|x
a
t , xb

t)p(xa
t |s

a
t )p(xb

t |s
b
t). (1)

In general, to infer and reconstruct speech we need to compute the likelihood of the observed mixture

p(yt|s
a
t , sb

t) =

∫

p(yt, x
a
t , xb

t |s
a
t , sb

t)dxa
t dxb

t , (2)

and the posterior expected values of the sources given the states,

E(xa
t |yt, s

a
t , sb

t) =

∫

xa
t p(xa

t , xb
t |yt, s

a
t , sb

t)dxa
t dxb

t , (3)

and similarly for xb
t . These quantities, combined with a prior model for the jointstate se-

quences{sa
1..T , sb

1..T }, allow us to compute the minimum mean squared error (MMSE) estima-

tors E(xa
1..T |y1..T ) or the maximuma posteriori (MAP) estimateE(xa

1..T |y1..T , ŝa
1..T , ŝb

1..T ),



whereŝa
1..T , ŝb

1..T = arg maxsa
1..T

,sb
1..T

p(sa
1..T , sb

1..T |y1..T ), where the subscript,1..T , refers to
all frames in the signal.

The mixing model can be defined in a number of ways. We explore two popular candidates, for
which the above integrals can be readily computed:Algonquin, and themax model.
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Figure 2: Model combination for two talkers. In (a) all dependencies are shown. In (b) the
full dual-dynamics model is graphed with thexa andxb integrated out, and corresponding
states from each speaker combined into product states. The other models are special cases
of this graph with different edges removed, as in Figure 1.

Algonquin: The relationship between the sources and mixture in the logpower spectral domain is
approximated as

p(yt|x
a
t , xb

t) = N(yt; log(exp(xa
t ) + exp(xb

t)),Ψ) (4)
whereΨ is introduced to model the error due to the omission of phase [4]. An iterative Newton-
Laplace method accurately approximates the conditional posteriorp(xa

t , xb
t |yt, s

a
t , sb

t) from (1) as
Gaussian. This Gaussian allows us to analytically compute the observation likelihoodp(yt|s

a
t , sb

t)
and expected valueE(xa

t |yt, s
a
t , sb

t), as in [4].

Max model: The mixing model is simplified using the fact that log of a sumis approximately the
log of the maximum:

p(y|xa, xb) = δ
(

y − max(xa, xb)
)

(5)
In this model the likelihood is

p(yt|s
a
t , sb

t) = pxa
t
(yt|s

a
t )Φxb(yt|s

b
t) + pxb

t
(yt|s

b
t)Φxa

t
(yt|s

a
t ), (6)

whereΦxa
t
(yt|s

a
t ) =

∫ yt

−∞
N(xa

t ;µsa
t
,Σsa

t
)dxa

t is a Gaussian cumulative distribution function [5].
In [5], such a model was used to compute state likelihoods andfind the optimal state sequence. In
[8], a simplified model was used to infer binary masking values for refiltering.

We take the max model a step further and derive source posteriors, so that we can compute the
MMSE estimators for the log power spectrum. Note that the source posteriors inxa

t andxb
t are each

a mixture of a delta function and a truncated Gaussian. Thus we analytically derive the necessary
expected value:

E(xa
t |yt, s

a
t , sb

t) = p(xa
t =yt|yt, s

a
t , sb

t)yt + p(xa
t < yt|yt, s

a
t , sb

t)E(xa
t |x

a
t < yt, s

a
t ) (7)

= πa
t yt + πb

t

(

µsa
t
− Σsa

t

pxa
t
(yt|s

a
t )

Φxa
t
(yt|sa

t )

)

, (8)

with weightsπa
t = p(xa

t=yt|yt, s
a
t , sb

t) = pxa
t
(yt|s

a
t )Φxb(yt|s

b
t)/p(yt|s

a
t , sb

t), andπb
t = 1−πa

t . For
many pairs of states one model is significantly louder than anotherµsa ≫ µsb in a given frequency
band, relative to their variances. In such cases it is reasonable to approximate the likelihood as
p(yt|s

a
t , sb

t) ≈ pxa
t
(yt|s

a
t ), and the posterior expected values according toE(xa

t |yt, s
a
t , sb

t) ≈ yt and
E(xb

t |yt, s
a
t , sb

t) ≈ min(yt, µsb
t
), and similarly forµsa ≪ µsb .

3 Likelihood Estimation

Because of the large number of state combinations, the modelwould not be practical without tech-
niques to reduce computation time. To speed up the evaluation of the joint state likelihood, we
employed bothband quantization of the acoustic Gaussians andjoint-state pruning.



Band Quantization: One source of computational savings stems from the fact that some of the
Gaussians in our model may differ only in a few features. Bandquantization addresses this by
approximating each of theD Gaussians of each model with a shared set ofd Gaussians, whered ≪
D, in each of theF frequency bands of the feature vector. A similar idea is described in [9]. It relies
on the use of a diagonal covariance matrix, so thatp(xa|sa) =

∏

f N(xa
f ;µf,sa ,Σf,sa), whereΣf,sa

are the diagonal elements of covariance matrixΣsa . The mappingMf (si) associates each of theD
Gaussians with one of thed Gaussians in bandf . Now p̂(xa|sa) =

∏

f N(xa
f ;µf,Mf (sa),Σf,Mf (sa))

is used as a surrogate forp(xa|sa). Figure 3 illustrates the idea.

Figure 3: In band quantization, many multi-dimensional Gaussians are mapped to a few
unidimensional Gaussians.

Under this model thed Gaussians are optimized by minimizing the KL-divergence
D(

∑

sa p(sa)p(xa|sa)||
∑

sa p(sa)p̂(xa|sa)), and likewise forsb. Then in each frequency band,
only d×d, instead ofD×D combinations of Gaussians have to be evaluated to computep(y|sa, sb).
Despite the relatively small number of componentsd in each band, taken across bands, band quanti-
zation is capable of expressingdF distinct patterns, in anF -dimensional feature space, although in
practice only a subset of these will be used to approximate the Gaussians in a given model. We used
d = 8 andD = 256, which reduced the likelihood computation time by three orders of magnitude.

Joint State Pruning: Another source of computational savings comes from the sparseness of the
model. Only a handful ofsa, sb combinations have likelihoods that are significantly larger than the
rest for a given observation. Only these states are requiredto adequately explain the observation. By
pruning the total number of combinations down to a smaller number we can speed up the likelihood
calculation, estimation of the components signals, as wellas the temporal inference.

However, we must estimate the likelihoods in order to determine which states to retain. We therefore
used band-quantization to estimate likelihoods for all states, perform state pruning, and then the full
model on the pruned states using the exact parameters. In theexperiments reported here, we pruned
down to 256 state combinations. The effect of these speedup methods on accuracy will be reported
in a future publication.

4 Inference

In our experiments we performed inference in four differentconditions:no dynamics, with acoustic
dynamics only, withgrammar dynamics only, and withdual dynamics (acoustic and grammar). With
no dynamics the source models reduce to GMMs and we infer MMSEestimates of the sources based



onp(xa, xb|y) as computed from (1), using Algonquin or the max model. Once the log spectrum of
each source is estimated, we estimate the corresponding time-domain signal as shown in [4].

In the acoustic dynamics condition the exact inference algorithm uses a 2-Dimensional Viterbi
search, described below, with acoustic temporal constraints p(st|st−1) and likelihoods from Eqn.
(1), to find the most likely joint state sequences1..T . Similarly in the grammar dynamics condition,
2-D Viterbi search is used to infer the grammar state sequences,v1..T . Instead of single Gaussians as
the likelihood models, however, we have mixture models in this case. So we can perform an MMSE
estimate of the sources by averaging over the posterior probability of the mixture components given
the grammar Viterbi sequence, and the observations.

It is critical to use the 2-D Viterbi algorithm in both cases,rather than the forward-backward algo-
rithm, because in the same-speaker condition at 0dB, the acoustic models and dynamics are sym-
metric. This symmetry means that the posterior is essentially bimodal and averaging over these
modes would yield identical estimates for both speakers. Byfinding the best path through the joint
state space, the 2-D Viterbi algorithm breaks this symmetryand allows the model to make different
estimates for each speaker.

In the dual-dynamics condition we use the model of section 2(b). With two speakers, exact inference
is computationally complex because the full joint distribution of the grammar and acoustic states,
(va × sa) × (vb × sb) is required and is very large in number. Instead we perform approximate
inference by alternating the 2-D Viterbi search between twofactors: the Cartesian productsa × sb

of the acoustic state sequences and the Cartesian productva × vb of the grammar state sequences.
When evaluating each state sequence we hold the other chain constant, which decouples its dynamics
and allows for efficient inference. This is a useful factorization because the statessa andsb interact
strongly with each other and similarly forva andvb. Again, in the same-talker condition, the 2-D
Viterbi search breaks the symmetry in each factor.

2-D Viterbi search: The Viterbi algorithm estimates the maximum-likelihood state sequences1..T

given the observationsx1..T . The complexity of the Viterbi search isO(TD2) whereD is the
number of states andT is the number of frames. For producing MAP estimates of the 2 sources, we
require a 2 dimensional Viterbi search which finds the most likely joint state sequencessa

1..T and
sb
1..T given the mixed signaly1..T as was proposed in [5].

On the surface, the 2-D Viterbi search appears to be of complexity O(TD4). Surprisingly, it can
be computed inO(TD3) operations. This stems from the fact that the dynamics for each chain are
independent. The forward-backward algorithm for a factorial HMM with N state variables requires
only O(TNDN+1) rather than theO(TD2N ) required for a naive implementation [10]. The same
is true for the Viterbi algorithm. In the Viterbi algorithm,we wish to find the most probable paths
leading to each state by finding the two argumentssa

t−1 andsb
t−1 of the following maximization:

{ŝa
t−1, ŝ

b
t−1} = arg max

sa
t−1

sb
t−1

p(sa
t |s

a
t−1)p(sb

t |s
b
t−1)p(sa

t−1, s
b
t−1|y1..t−1)

= arg max
sa

t−1

p(sa
t |s

a
t−1)max

sb
t−1

p(sb
t |s

b
t−1)p(sa

t−1, s
b
t−1|y1..t−1). (9)

The two maximizations can be done in sequence, requiringO(D3) operations withO(D2) storage
for each step. In general, as with the forward-backward algorithm, theN -dimensional Viterbi search
requiresO(TNDN+1) operations.

We can also exploit the sparsity of the transition matrices and observation likelihoods, by pruning
unlikely values. Using both of these methods our implementation of 2-D Viterbi search is faster
than the acoustic likelihood computation that serves as itsinput, for the model sizes and grammars
chosen in the speech separation task.

Speaker and Gain Estimation: In the challenge task, the gains and identities of the two speakers
were unknown at test time and were selected from a set of34 speakers which were mixed at SNRs
ranging from 6dB to -9dB. We used speaker-dependent acoustic models because of their advantages
when separating different speakers. These models were trained on gain-normalized data, so the
models are not well matched to the different gains of the signals at test time. This means that we
have to estimate both the speaker identities and the gain in order to adapt our models to the source
signals for each test utterance.



The number of speakers and range of SNRs in the test set makes it too expensive to consider every
possible combination of models and gains. Instead, we developed an efficient model-based method
for identifying the speakers and gains, described in [2]. The algorithm is based upon a very simple
idea: identify and utilize frames that are dominated by a single source – based on their likelihoods
under each speaker-dependent acoustic model – to determinewhat sources are present in the mixture.
Using this criteria we can eliminate most of the unlikely speakers, and explore all combinations
of the remaining speakers. An approximate EM procedure is then used to select a single pair of
speakers and estimate their gains.

Recognition: Although inference in the system may involve recognition of the words– for models
that contain a grammar –we still found that a separately trained recognizer performed better. After
reconstruction, each of the two signals is therefore decoded with a speech recognition system that
incorporates Speaker Dependent Labeling (SDL) [2].

This method uses speaker dependent models for each of the 34 speakers. Instead of using the
speaker identities provided by the speaker ID and gain module, we followed the approach for gender
dependent labeling (GDL) described in [11]. This techniqueprovides better results than if the true
speaker ID is specified.

5 Results

The Speech Separation Challenge [3] involves separating the mixed speech of two speakers drawn
from of a set of 34 speakers. An example utterance isplace white by R 4 now. In each recording,
one of the speakers sayswhite while the other saysblue, red or green. The task is to recognize the
letter and the digit of the speaker that saidwhite. Using the SDL recognizer, we decoded the two
estimated signals under the assumption that one signal contains white and the other does not, and
vice versa. We then used the association that yielded the highest combined likelihood.
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Figure 4: Average word error rate (WER) as a function of model dynamics, in different
talker conditions, compared to Human error rates, using Algonquin.

Human listener performance [3] is compared in Figure 4 to results using the SDL recognizer without
speech separation, and for each the proposed models. Performance is poor without separation in all
conditions. With no dynamics the models do surprisingly well in the different talker conditions, but
poorly when the signals come from the same talker. Acoustic dynamics gives some improvement,
mainly in the same-talker condition. The grammar dynamics seems to give the most benefit, bring-
ing the error rate in the same-gender condition below that ofhumans. The dual-dynamics model
performed about the same as the grammar dynamics model, despite our intuitions. Replacing Algo-
nquin with the max model reduced the error rate in the dual dynamics model (from 24.3% to 23.5%)
and grammar dynamics model (from 24.6% to 22.6%), which brings the latter closer than any other
model to the human recognition rate of 22.3%.

Figure 5 shows the relative word error rate of the best systemcompared to human subjects. When
both speakers are around the same loudness, the system exceeds human performance, and in the
same-gender condition makes less than half the errors of thehumans. Human listeners do better
when the two signals are at different levels, even if the target is below the masker (i.e., in -9dB),
suggesting that they are better able to make use of differences in amplitude as a cue for separation.
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Figure 5: Word error rate of best system relative to human performance. Shaded area is
where the system outperforms human listeners.

An interesting question is to what extent different grammarconstraints affect the results. To test this,
we limited the grammar to just the two test utterances, and the error rate on the estimated sources
dropped to around 10%. This may be a useful paradigm for separating speech from background noise
when the text is known, such as in closed-captioned recordings. At the other extreme, in realistic
speech recognition scenarios, there is little knowledge ofthe background speaker’s grammar. In such
cases the benefits of models of low-level acoustic continuity over purely grammar-based systems
may be more apparent.

It is our hope that further experiments with both human and machine listeners will provide us with a
better understanding of the differences in their performance characteristics, and provide insights into
how the human auditory system functions, as well as how automatic speech perception in general
can be brought to human levels of performance.
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